Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Nat Commun ; 15(1): 3443, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658557

ABSTRACT

The hypothalamus contains a remarkable diversity of neurons that orchestrate behavioural and metabolic outputs in a highly plastic manner. Neuronal diversity is key to enabling hypothalamic functions and, according to the neuroscience dogma, it is predetermined during embryonic life. Here, by combining lineage tracing of hypothalamic pro-opiomelanocortin (Pomc) neurons with single-cell profiling approaches in adult male mice, we uncovered subpopulations of 'Ghost' neurons endowed with atypical molecular and functional identity. Compared to 'classical' Pomc neurons, Ghost neurons exhibit negligible Pomc expression and are 'invisible' to available neuroanatomical approaches and promoter-based reporter mice for studying Pomc biology. Ghost neuron numbers augment in diet-induced obese mice, independent of neurogenesis or cell death, but weight loss can reverse this shift. Our work challenges the notion of fixed, developmentally programmed neuronal identities in the mature hypothalamus and highlight the ability of specialised neurons to reversibly adapt their functional identity to adult-onset obesogenic stimuli.


Subject(s)
Hypothalamus , Neurons , Obesity , Pro-Opiomelanocortin , Single-Cell Analysis , Animals , Pro-Opiomelanocortin/metabolism , Pro-Opiomelanocortin/genetics , Neurons/metabolism , Obesity/metabolism , Obesity/pathology , Male , Mice , Hypothalamus/metabolism , Hypothalamus/cytology , Disease Models, Animal , Diet, High-Fat , Mice, Inbred C57BL , Mice, Transgenic , Neurogenesis , Mice, Obese
2.
Drugs ; 84(2): 127-148, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38127286

ABSTRACT

The use of glucagon-like peptide-1 (GLP-1) receptor-based multi-agonists in the treatment of type 2 diabetes and obesity holds great promise for improving glycaemic control and weight management. Unimolecular dual and triple agonists targeting multiple gut hormone-related pathways are currently in clinical trials, with recent evidence supporting their efficacy. However, significant knowledge gaps remain regarding the biological mechanisms and potential adverse effects associated with these multi-target agents. The mechanisms underlying the therapeutic efficacy of GLP-1 receptor-based multi-agonists remain somewhat mysterious, and hidden threats may be associated with the use of gut hormone-based polyagonists. In this review, we provide a critical analysis of the benefits and risks associated with the use of these new drugs in the management of obesity and diabetes, while also exploring new potential applications of GLP-1-based pharmacology beyond the field of metabolic disease.


Subject(s)
Diabetes Mellitus, Type 2 , Metabolic Diseases , Humans , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Glucagon-Like Peptide 1/therapeutic use , Obesity/drug therapy , Obesity/metabolism , Metabolic Diseases/drug therapy , Glucagon-Like Peptide-1 Receptor , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use
4.
Nat Metab ; 4(8): 1071-1083, 2022 08.
Article in English | MEDLINE | ID: mdl-35995995

ABSTRACT

Dual agonists activating the peroxisome proliferator-activated receptors alpha and gamma (PPARɑ/ɣ) have beneficial effects on glucose and lipid metabolism in patients with type 2 diabetes, but their development was discontinued due to potential adverse effects. Here we report the design and preclinical evaluation of a molecule that covalently links the PPARɑ/ɣ dual-agonist tesaglitazar to a GLP-1 receptor agonist (GLP-1RA) to allow for GLP-1R-dependent cellular delivery of tesaglitazar. GLP-1RA/tesaglitazar does not differ from the pharmacokinetically matched GLP-1RA in GLP-1R signalling, but shows GLP-1R-dependent PPARɣ-retinoic acid receptor heterodimerization and enhanced improvements of body weight, food intake and glucose metabolism relative to the GLP-1RA or tesaglitazar alone in obese male mice. The conjugate fails to affect body weight and glucose metabolism in GLP-1R knockout mice and shows preserved effects in obese mice at subthreshold doses for the GLP-1RA and tesaglitazar. Liquid chromatography-mass spectrometry-based proteomics identified PPAR regulated proteins in the hypothalamus that are acutely upregulated by GLP-1RA/tesaglitazar. Our data show that GLP-1RA/tesaglitazar improves glucose control with superior efficacy to the GLP-1RA or tesaglitazar alone and suggest that this conjugate might hold therapeutic value to acutely treat hyperglycaemia and insulin resistance.


Subject(s)
Diabetes Mellitus, Type 2 , PPAR alpha , Alkanesulfonates , Animals , Body Weight , Diabetes Mellitus, Type 2/drug therapy , Glucagon-Like Peptide 1/therapeutic use , Glucagon-Like Peptide-1 Receptor , Glucose , Male , Mice , Obesity/drug therapy , Obesity/metabolism , PPAR alpha/agonists , PPAR alpha/therapeutic use , Phenylpropionates
5.
Biochimie ; 2022 Jul 19.
Article in English | MEDLINE | ID: mdl-35863558

ABSTRACT

Obesity is a chronic and debilitating disorder that originates from alterations in energy-sensing brain circuits controlling body weight gain and food intake. The dysregulated syntheses and actions of lipid mediators in the hypothalamus induce weight gain and overfeeding, but the molecular and cellular underpinnings of these alterations remain elusive. In response to changes in the nutritional status, different lipid sensing pathways in the hypothalamus direct body energy needs in a Yin-Yang model. Endocannabinoids orchestrate the crosstalk between hypothalamic circuits and the sympathetic nervous system to promote food intake and energy accumulation during fasting, whereas bile acids act on the same top-down axis to reduce energy intake and possibly storage after the meal. In obesity, the bioavailability and downstream cellular actions of endocannabinoids and bile acids are altered in hypothalamic neurons involved in body weight and metabolic control. Thus, the onset and progression of this disease might result from an imbalance in hypothalamic sensing of multiple lipid signals, which are possibly integrated by common molecular nodes. In this viewpoint, we discuss a possible model that explains how bile acids and endocannabinoids may exert their effects on energy balance regulation via interconnected mechanisms at the level of the hypothalamic neuronal circuits. Therefore, we propose a new conceptual framework for understanding and treating central mechanisms of maladaptive lipid action in obesity.

6.
Cell Rep ; 37(2): 109800, 2021 10 12.
Article in English | MEDLINE | ID: mdl-34644574

ABSTRACT

Hypothalamic pro-opiomelanocortin (POMC) neurons are known to trigger satiety. However, these neuronal cells encompass heterogeneous subpopulations that release γ-aminobutyric acid (GABA), glutamate, or both neurotransmitters, whose functions are poorly defined. Using conditional mutagenesis and chemogenetics, we show that blockade of the energy sensor mechanistic target of rapamycin complex 1 (mTORC1) in POMC neurons causes hyperphagia by mimicking a cellular negative energy state. This is associated with decreased POMC-derived anorexigenic α-melanocyte-stimulating hormone and recruitment of POMC/GABAergic neurotransmission, which is restrained by cannabinoid type 1 receptor signaling. Electrophysiology and optogenetic studies further reveal that pharmacological blockade of mTORC1 simultaneously activates POMC/GABAergic neurons and inhibits POMC/glutamatergic ones, implying that the functional specificity of these subpopulations relies on mTORC1 activity. Finally, POMC neurons with different neurotransmitter profiles possess specific molecular signatures and spatial distribution. Altogether, these findings suggest that mTORC1 orchestrates the activity of distinct POMC neurons subpopulations to regulate feeding behavior.


Subject(s)
Appetite Regulation , Feeding Behavior , GABAergic Neurons/metabolism , Glutamic Acid/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Neural Inhibition , Paraventricular Hypothalamic Nucleus/metabolism , Pro-Opiomelanocortin/metabolism , Animals , Male , Mechanistic Target of Rapamycin Complex 1/genetics , Mice, Inbred C57BL , Mice, Knockout , Phenotype , Pro-Opiomelanocortin/genetics , Signal Transduction
7.
Int J Mol Sci ; 22(10)2021 May 15.
Article in English | MEDLINE | ID: mdl-34063496

ABSTRACT

Diet-induced obesity can originate from the dysregulated activity of hypothalamic neuronal circuits, which are critical for the regulation of body weight and food intake. The exact mechanisms underlying such neuronal defects are not yet fully understood, but a maladaptive cross-talk between neurons and surrounding microglial is likely to be a contributing factor. Functional and anatomical connections between microglia and hypothalamic neuronal cells are at the core of how the brain orchestrates changes in the body's metabolic needs. However, such a melodious interaction may become maladaptive in response to prolonged diet-induced metabolic stress, thereby causing overfeeding, body weight gain, and systemic metabolic perturbations. From this perspective, we critically discuss emerging molecular and cellular underpinnings of microglia-neuron communication in the hypothalamic neuronal circuits implicated in energy balance regulation. We explore whether changes in this intercellular dialogue induced by metabolic stress may serve as a protective neuronal mechanism or contribute to disease establishment and progression. Our analysis provides a framework for future mechanistic studies that will facilitate progress into both the etiology and treatments of metabolic disorders.


Subject(s)
Microglia/metabolism , Neurons/metabolism , Obesity/etiology , Animals , Cell Communication , Cytokines/metabolism , Diet/adverse effects , Humans , Nerve Net , Obesity/immunology , Obesity/metabolism
8.
Cell Metab ; 33(7): 1483-1492.e10, 2021 07 06.
Article in English | MEDLINE | ID: mdl-33887197

ABSTRACT

Bile acids (BAs) improve metabolism and exert anti-obesity effects through the activation of the Takeda G protein-coupled receptor 5 (TGR5) in peripheral tissues. TGR5 is also found in the brain hypothalamus, but whether hypothalamic BA signaling is implicated in body weight control and obesity pathophysiology remains unknown. Here we show that hypothalamic BA content is reduced in diet-induced obese mice. Central administration of BAs or a specific TGR5 agonist in these animals decreases body weight and fat mass by activating the sympathetic nervous system, thereby promoting negative energy balance. Conversely, genetic downregulation of hypothalamic TGR5 expression in the mediobasal hypothalamus favors the development of obesity and worsens established obesity by blunting sympathetic activity. Lastly, hypothalamic TGR5 signaling is required for the anti-obesity action of dietary BA supplementation. Together, these findings identify hypothalamic TGR5 signaling as a key mediator of a top-down neural mechanism that counteracts diet-induced obesity.


Subject(s)
Bile Acids and Salts/metabolism , Obesity/metabolism , Receptors, G-Protein-Coupled/metabolism , Animals , Body Weight/genetics , Energy Metabolism/genetics , HEK293 Cells , Humans , Hypothalamus/metabolism , Mice , Mice, Inbred C57BL , Mice, Obese , Mice, Transgenic , Obesity/genetics , Obesity/prevention & control , Receptors, G-Protein-Coupled/genetics , Signal Transduction/physiology
9.
Nat Metab ; 3(3): 299-308, 2021 03.
Article in English | MEDLINE | ID: mdl-33633406

ABSTRACT

Hypothalamic AgRP and POMC neurons are conventionally viewed as the yin and yang of the body's energy status, since they act in an opposite manner to modulate appetite and systemic energy metabolism. However, although AgRP neurons' functions are comparatively well understood, a unifying theory of how POMC neuronal cells operate has remained elusive, probably due to their high level of heterogeneity, which suggests that their physiological roles might be more complex than initially thought. In this Perspective, we propose a conceptual framework that integrates POMC neuronal heterogeneity with appetite regulation, whole-body metabolic physiology and the development of obesity. We highlight emerging evidence indicating that POMC neurons respond to distinct combinations of interoceptive signals and food-related cues to fine-tune divergent metabolic pathways and behaviours necessary for survival. The new framework we propose reflects the high degree of developmental plasticity of this neuronal population and may enable progress towards understanding of both the aetiology and treatment of metabolic disorders.


Subject(s)
Energy Metabolism/physiology , Neurons/metabolism , Pro-Opiomelanocortin/metabolism , Agouti-Related Protein/metabolism , Animals , Humans , Mice , Pro-Opiomelanocortin/genetics , RNA, Messenger/metabolism , Receptor, Melanocortin, Type 4/metabolism
10.
Diabetes ; 70(2): 415-422, 2021 02.
Article in English | MEDLINE | ID: mdl-33144338

ABSTRACT

Glucagon-like peptide 1 receptor (GLP-1R) agonists effectively improve glycemia and body weight in patients with type 2 diabetes and obesity but have limited weight-lowering efficacy and minimal insulin sensitizing action. In preclinical models, peripherally restricted cannabinoid receptor type 1 (CB1R) inhibitors, which are devoid of the neuropsychiatric adverse effects observed with brain-penetrant CB1R blockers, ameliorate obesity and its multiple metabolic complications. Using mouse models with genetic loss of CB1R or GLP-1R, we demonstrate that these two metabolic receptors modulate food intake and body weight via reciprocal functional interactions. In diet-induced obese mice, the coadministration of a peripheral CB1R inhibitor with long-acting GLP-1R agonists achieves greater reduction in body weight and fat mass than monotherapies by promoting negative energy balance. This cotreatment also results in larger improvements in systemic and hepatic insulin action, systemic dyslipidemia, and reduction of hepatic steatosis. Thus, peripheral CB1R blockade may allow safely potentiating the antiobesity and antidiabetic effects of currently available GLP-1R agonists.


Subject(s)
Body Weight/physiology , Eating/physiology , Glucagon-Like Peptide-1 Receptor/metabolism , Obesity/metabolism , Receptor, Cannabinoid, CB1/metabolism , Animals , Blood Glucose/metabolism , Body Composition/physiology , Diet, High-Fat , Energy Metabolism , Glucagon-Like Peptide-1 Receptor/genetics , Insulin/blood , Leptin/blood , Male , Mice , Mice, Knockout , Obesity/genetics , Receptor, Cannabinoid, CB1/genetics
11.
Int J Obes (Lond) ; 44(11): 2179-2193, 2020 11.
Article in English | MEDLINE | ID: mdl-32317751

ABSTRACT

Pharmacological blockers of the cannabinoid receptor type-1 (CB1) have been considered for a long time as the holy grail of obesity pharmacotherapy. These agents were hastily released in the clinical setting, due to their clear-cut therapeutic efficacy. However, the first generation of these drugs, which were able to target both the brain and peripheral tissues, had serious neuropsychiatric effects, leading authorities to ban their clinical use. New peripherally restricted CB1 blockers, characterized by low brain penetrance, have been developed over the past 10 years. In preclinical studies, these molecules seem to overcome the neuropsychiatric negative effects previously observed with brain-penetrant CB1 inhibitors, while retaining or even outperforming their efficacy. The mechanisms of action of these peripherally restricted compounds are only beginning to emerge, and a balanced discussion of the risk/benefits ratio associated to their possible clinical use is urgently needed, in order to avoid repeating past mistakes. Here, we will critically discuss the advantages and the possible hidden threats associated with the use of peripheral CB1 blockers for the pharmacotherapy of obesity and its associated metabolic complications. We will address whether this novel pharmacological approach might 'compete' with current pharmacotherapies for obesity and diabetes, while also conceptualizing future CB1-based pharmacological trends that may significantly lower the risk/benefits ratio associated with the use of these drugs.


Subject(s)
Cannabinoid Receptor Antagonists/pharmacology , Obesity/drug therapy , Animals , Cannabinoid Receptor Antagonists/adverse effects , Endocannabinoids , Humans , Receptor, Cannabinoid, CB1/antagonists & inhibitors
12.
Neuroscience ; 447: 3-14, 2020 11 01.
Article in English | MEDLINE | ID: mdl-31689486

ABSTRACT

One important lesson from the last decade of studies in the field of systemic energy metabolism is that obesity is first and foremost a brain disease. Hypothalamic neurons dysfunction observed in response to chronic metabolic stress is a key pathogenic node linking consumption of hypercaloric diets with body weight gain and associated metabolic sequelae. A key hypothalamic neuronal population expressing the neuropeptide Pro-opio-melanocortin (POMC) displays altered electrical activity and dysregulated neuropeptides production capacity after long-term feeding with hypercaloric diets. However, whether such neuronal dysfunction represents a consequence or a mechanism of disease, remains a subject of debate. Here, we will review and highlight emerging pathogenic mechanisms that explain why POMC neurons undergo dysfunctional activity in response to caloric overload, and critically address whether these mechanisms may be causally implicated in the physiopathology of obesity and of its associated co-morbidities.


Subject(s)
Metabolic Diseases , Pro-Opiomelanocortin , Diet , Humans , Hypothalamus/metabolism , Metabolic Diseases/etiology , Neurons/metabolism , Pro-Opiomelanocortin/metabolism
13.
Nat Metab ; 1(2): 222-235, 2019 02.
Article in English | MEDLINE | ID: mdl-32694784

ABSTRACT

Heterogeneous populations of hypothalamic neurons orchestrate energy balance via the release of specific signatures of neuropeptides. However, how specific intracellular machinery controls peptidergic identities and function of individual hypothalamic neurons remains largely unknown. The transcription factor T-box 3 (Tbx3) is expressed in hypothalamic neurons sensing and governing energy status, whereas human TBX3 haploinsufficiency has been linked with obesity. Here, we demonstrate that loss of Tbx3 function in hypothalamic neurons causes weight gain and other metabolic disturbances by disrupting both the peptidergic identity and plasticity of Pomc/Cart and Agrp/Npy neurons. These alterations are observed after loss of Tbx3 in both immature hypothalamic neurons and terminally differentiated mouse neurons. We further establish the importance of Tbx3 for body weight regulation in Drosophila melanogaster and show that TBX3 is implicated in the differentiation of human embryonic stem cells into hypothalamic Pomc neurons. Our data indicate that Tbx3 directs the terminal specification of neurons as functional components of the melanocortin system and is required for maintaining their peptidergic identity. In summary, we report the discovery of a key mechanistic process underlying the functional heterogeneity of hypothalamic neurons governing body weight and systemic metabolism.


Subject(s)
Hypothalamus/metabolism , Melanocortins/metabolism , Neurons/metabolism , T-Box Domain Proteins/metabolism , Agouti-Related Protein/genetics , Agouti-Related Protein/metabolism , Animals , Body Weight , Energy Metabolism , Gene Expression Profiling , Green Fluorescent Proteins/genetics , Hypothalamus/cytology , Mice , Mice, Inbred C57BL , Pro-Opiomelanocortin/genetics , RNA, Messenger/genetics , T-Box Domain Proteins/genetics
14.
Nat Commun ; 9(1): 4975, 2018 11 20.
Article in English | MEDLINE | ID: mdl-30459311

ABSTRACT

In the original PDF version of this article, affiliation 1, 'Institute for Diabetes and Obesity, Helmholtz Diabetes Center (HDC), Helmholtz Zentrum Muenchen & German Center for Diabetes Research (DZD), Neuherberg, Germany', was incorrectly given as 'Institute of Diabetes and Regeneration Research, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health (GmbH), Neuherberg, Germany '. This has now been corrected in the PDF version of the article; the HTML version was correct at the time of publication.

15.
Nat Commun ; 9(1): 4304, 2018 10 23.
Article in English | MEDLINE | ID: mdl-30353008

ABSTRACT

Pharmacological stimulation of brown adipose tissue (BAT) thermogenesis to increase energy expenditure is progressively being pursued as a viable anti-obesity strategy. Here, we report that pharmacological activation of the cold receptor transient receptor potential cation channel subfamily M member 8 (TRPM8) with agonist icilin mimics the metabolic benefits of cold exposure. In diet-induced obese (DIO) mice, treatment with icilin enhances energy expenditure, and decreases body weight, without affecting food intake. To further potentiate the thermogenic action profile of icilin and add complementary anorexigenic mechanisms, we set out to identify pharmacological partners next to icilin. To that end, we specifically targeted nicotinic acetylcholine receptor (nAChR) subtype alpha3beta4 (α3ß4), which we had recognized as a potential regulator of energy homeostasis and glucose metabolism. Combinatorial targeting of TRPM8 and nAChR α3ß4 by icilin and dimethylphenylpiperazinium (DMPP) orchestrates synergistic anorexic and thermogenic pathways to reverse diet-induced obesity, dyslipidemia, and glucose intolerance in DIO mice.


Subject(s)
Diabetes Mellitus, Type 2/metabolism , Obesity/metabolism , Receptors, Nicotinic/metabolism , TRPM Cation Channels/antagonists & inhibitors , Adipose Tissue, Brown/drug effects , Adipose Tissue, Brown/metabolism , Animals , Body Weight/drug effects , Cold Temperature , Diabetes Mellitus, Type 2/drug therapy , Diet , Dimethylphenylpiperazinium Iodide/pharmacology , Dimethylphenylpiperazinium Iodide/therapeutic use , Energy Metabolism/drug effects , Fatty Liver/pathology , Glucose Intolerance/pathology , Insulin Resistance , Male , Melanocortins/metabolism , Mice, Inbred C57BL , Mice, Obese , Obesity/drug therapy , Pyrimidinones/pharmacology , Pyrimidinones/therapeutic use , Receptor, Melanocortin, Type 4/metabolism , TRPM Cation Channels/metabolism , Thermogenesis/drug effects
16.
J Clin Invest ; 127(11): 4148-4162, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-29035280

ABSTRACT

Dysregulated adipocyte physiology leads to imbalanced energy storage, obesity, and associated diseases, imposing a costly burden on current health care. Cannabinoid receptor type-1 (CB1) plays a crucial role in controlling energy metabolism through central and peripheral mechanisms. In this work, adipocyte-specific inducible deletion of the CB1 gene (Ati-CB1-KO) was sufficient to protect adult mice from diet-induced obesity and associated metabolic alterations and to reverse the phenotype in already obese mice. Compared with controls, Ati-CB1-KO mice showed decreased body weight, reduced total adiposity, improved insulin sensitivity, enhanced energy expenditure, and fat depot-specific cellular remodeling toward lowered energy storage capacity and browning of white adipocytes. These changes were associated with an increase in alternatively activated macrophages concomitant with enhanced sympathetic tone in adipose tissue. Remarkably, these alterations preceded the appearance of differences in body weight, highlighting the causal relation between the loss of CB1 and the triggering of metabolic reprogramming in adipose tissues. Finally, the lean phenotype of Ati-CB1-KO mice and the increase in alternatively activated macrophages in adipose tissue were also present at thermoneutral conditions. Our data provide compelling evidence for a crosstalk among adipocytes, immune cells, and the sympathetic nervous system (SNS), wherein CB1 plays a key regulatory role.


Subject(s)
Adipocytes/metabolism , Energy Metabolism , Macrophages/physiology , Receptor, Cannabinoid, CB1/physiology , Adipose Tissue, White/immunology , Adipose Tissue, White/metabolism , Adipose Tissue, White/pathology , Animals , Body Weight , Energy Intake , Homeostasis , Macrophage Activation , Male , Mice, Inbred C57BL , Mice, Knockout , Obesity/immunology , Obesity/metabolism , Organ Specificity , Transcriptome
17.
Cell Metab ; 26(4): 620-632.e6, 2017 Oct 03.
Article in English | MEDLINE | ID: mdl-28943448

ABSTRACT

Chronic inflammation has been proposed to contribute to the pathogenesis of diet-induced obesity. However, scarce therapeutic options are available to treat obesity and the associated immunometabolic complications. Glucocorticoids are routinely employed for the management of inflammatory diseases, but their pleiotropic nature leads to detrimental metabolic side effects. We developed a glucagon-like peptide-1 (GLP-1)-dexamethasone co-agonist in which GLP-1 selectively delivers dexamethasone to GLP-1 receptor-expressing cells. GLP-1-dexamethasone lowers body weight up to 25% in obese mice by targeting the hypothalamic control of feeding and by increasing energy expenditure. This strategy reverses hypothalamic and systemic inflammation while improving glucose tolerance and insulin sensitivity. The selective preference for GLP-1 receptor bypasses deleterious effects of dexamethasone on glucose handling, bone integrity, and hypothalamus-pituitary-adrenal axis activity. Thus, GLP-1-directed glucocorticoid pharmacology represents a safe and efficacious therapy option for diet-induced immunometabolic derangements and the resulting obesity.


Subject(s)
Dexamethasone/therapeutic use , Glucagon-Like Peptide 1/therapeutic use , Glucocorticoids/therapeutic use , Incretins/therapeutic use , Inflammation/drug therapy , Obesity/drug therapy , Animals , Body Weight/drug effects , Dexamethasone/analogs & derivatives , Energy Metabolism/drug effects , Glucagon-Like Peptide 1/analogs & derivatives , Glucocorticoids/chemistry , Glucose/metabolism , HEK293 Cells , Humans , Hypothalamus/drug effects , Hypothalamus/metabolism , Incretins/chemistry , Inflammation/complications , Inflammation/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Obese , Obesity/complications , Obesity/metabolism
18.
Cell ; 166(4): 867-880, 2016 Aug 11.
Article in English | MEDLINE | ID: mdl-27518562

ABSTRACT

We report that astrocytic insulin signaling co-regulates hypothalamic glucose sensing and systemic glucose metabolism. Postnatal ablation of insulin receptors (IRs) in glial fibrillary acidic protein (GFAP)-expressing cells affects hypothalamic astrocyte morphology, mitochondrial function, and circuit connectivity. Accordingly, astrocytic IR ablation reduces glucose-induced activation of hypothalamic pro-opio-melanocortin (POMC) neurons and impairs physiological responses to changes in glucose availability. Hypothalamus-specific knockout of astrocytic IRs, as well as postnatal ablation by targeting glutamate aspartate transporter (GLAST)-expressing cells, replicates such alterations. A normal response to altering directly CNS glucose levels in mice lacking astrocytic IRs indicates a role in glucose transport across the blood-brain barrier (BBB). This was confirmed in vivo in GFAP-IR KO mice by using positron emission tomography and glucose monitoring in cerebral spinal fluid. We conclude that insulin signaling in hypothalamic astrocytes co-controls CNS glucose sensing and systemic glucose metabolism via regulation of glucose uptake across the BBB.


Subject(s)
Astrocytes/metabolism , Glucose/metabolism , Hypothalamus/metabolism , Insulin/metabolism , Signal Transduction , Amino Acid Transport System X-AG/genetics , Amino Acid Transport System X-AG/metabolism , Animals , Blood-Brain Barrier , Endoplasmic Reticulum/metabolism , Glial Fibrillary Acidic Protein/genetics , Glial Fibrillary Acidic Protein/metabolism , Homeostasis , Mice , Mitochondria/metabolism , Neurons/cytology , Neurons/metabolism , Pro-Opiomelanocortin/metabolism , Receptor, Insulin/genetics , Receptor, Insulin/metabolism
20.
Nat Commun ; 7: 10782, 2016 Feb 29.
Article in English | MEDLINE | ID: mdl-26923837

ABSTRACT

Hypothalamic leptin signalling has a key role in food intake and energy-balance control and is often impaired in obese individuals. Here we identify histone deacetylase 5 (HDAC5) as a regulator of leptin signalling and organismal energy balance. Global HDAC5 KO mice have increased food intake and greater diet-induced obesity when fed high-fat diet. Pharmacological and genetic inhibition of HDAC5 activity in the mediobasal hypothalamus increases food intake and modulates pathways implicated in leptin signalling. We show HDAC5 directly regulates STAT3 localization and transcriptional activity via reciprocal STAT3 deacetylation at Lys685 and phosphorylation at Tyr705. In vivo, leptin sensitivity is substantially impaired in HDAC5 loss-of-function mice. Hypothalamic HDAC5 overexpression improves leptin action and partially protects against HFD-induced leptin resistance and obesity. Overall, our data suggest that hypothalamic HDAC5 activity is a regulator of leptin signalling that adapts food intake and body weight to our dietary environment.


Subject(s)
Hypothalamus/metabolism , Leptin/metabolism , Animals , Blood Glucose , Cell Line , Gene Expression Regulation , Gene Knockdown Techniques , Glucose Tolerance Test , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Infusions, Intraventricular , Insulin Resistance , Laser Capture Microdissection , Leptin/genetics , Male , Melanocyte-Stimulating Hormones/pharmacology , Mice , Mice, Inbred Strains , Mice, Knockout , Neurons/physiology , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...